CAPM The Capital Asset Pricing Model:Theory and Evidence (FF 2002)

30 05 2009

Daya tarik CAPM adalah dengan memberikan prediksi dan intuisi yang powerful yang mampu mengukur resiko dalam kaitannya dengan expected return. Namun banyak hal dalam CAPM yang sulit dinyatakan dalam dunia nyata karena CAPM mengasumsikan hanya satu sumber systematic risk: Market Risk.

Systematic risk:

(1) Tidak dapat didiversifikasikan

(2) Dapat di-hedge

(3) Dalam keseimbangan hal ini dikompensasi dengan risk premium

Assumption CAPM

  1. Bertujuan untuk memaksimilasi economic utility.
  2. rational risk-averse.(Ekspektasi homogen)
  3. price takers, mereka tidak mampu mempengaruhi harga.
  4. Lend and borrow unlimited under the risk free rate of interest.
  5. Diperdagangkan tanpa transaction atau taxation costs.
  6. Transaksi dengan pihak sekuritas keseluruhannya dapat dibagi menjadi small parcel.
  7. Diasumsikan semua informasi tersedia bagi semua investor dan dalam waktu yang sama. (Perfect Information)

Fisher and Black (1972) è Asumsi yang digunakan lebih realistis

Tujuan dari pengujian teori CAPM

Expected returns pada semua assets adalah linear dan berhubungan dengan beta mereka, dan tidak ada lagi variable yang memiliki marginal explanatory power.

Beta premium positive, yang berarti bahwa expected return pada melampaui expected return pada asset dimana returns tidak berkorelasi dengan market return.

Dalam model Sharpe-Lintner, asset tidak berkorelasi dengan market yang memiliki expected returns equal with risk-free interest rate, dan beta premium adalah expected market return dikurangi the risk-free rate

Empirical Research

  • Uji sebelumnya menyatakan bahwa CAPM memiliki positive relationship, tapi terlalu flat (Lintner 1965, BJS 72 etc).
  • Untuk meningkatkan presisi dari estimasi beta, researcher bekerja dengan portfolios daripada individu aset.
  • Example: Fama-MacBeth (1973)

Hubungan antara rata-rata ekses return dengan beta  bersifat linier dan resiko nonsistematik tidak menjelaskan (mempengaruhi) besarnya rata-rata ekses return. Mereka memperluas model penelitian dengan memasukkan :

a. Nilai kuadrat beta (guna mentest linieritas hubungan ekses return dengan beta).

b. Nilai estimasi standar deviasi residual (guna mentest adanya pengaruh resiko nonsistematik).

Rp – rf = a0 + a1  βp + a2 (βp )2 + ζi,t (non-linearity)

Rp – rf = a0 + a1  βp + a2 (βp )2 + a3 RVp  + ζi,t (idiosyncratic risk)

Recent Test

Basu (1977)è E/P

Banz (1981) è Size effect

CAPM Failed???

Behavioralist è Overreaction , Extrapolate past performance (see Debond Thaler 1987)

Modify assumption?? è ICAPMè different objectives of investor (see Merton 1973)

Three Faktor model FF (1993)

Advertisements

Actions

Information

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




%d bloggers like this: